Home » Angles » Trigonometric Functions WORD problems


Trigonometric Functions WORD problems

Ferris Wheel trigonometry word problem

The Ferris wheel at Navy Pier has a diameter of 140 feet. It stands 10 feet off the ground. The wheel has 40 gondolas that seat six passengers each. It takes about 6 minutes for the Navi Pier Ferris wheel to complete one rotation.

Draw a diagram of the Navy Pier Ferris wheel and the boarding platform. Fill in the necessary information. Sketch the graph. Write a cosine equation for your curve. Write a sine equation for your curve.

Answer the following questions:

i. What is the circumference of the wheel?

ii. At what speed is the wheel traveling? Please answer in feet / second.

iii. If you begin your ride at the base of the wheel, what is the height after 1 minute? 4 minutes?

iv. At what approximate time(s) will you reach the following heights?

a) 100 ft

b) 240 ft

v. What is the length of the arc traveled by the Navy Pier Ferris wheel from the 4 o’clock to the 7 o’clock position?


Solution to this Trigonometric Function word practice problem is provided in the video below!


Roller Coaster trigonometry problem

A portion of a roller coaster is to be built in the shape of a sinusoid. You have been hired to calculate the lengths of the horizontal and vertical timber supports to be used.

a. The high and low points on the track are separated by 50 meters horizontally and 30 meters vertically. The low point is 3 meters below the ground. Letting y be the number of meters the track is above the ground and x the number of meters horizontally from the high point, write an equation expressing y in terms of x.

b. How long is the vertical timber at the high point? At x = 4 m? At x = 32 m?

c. Where does the track first go below ground?


Solution to this Trigonometric Function example practice problem is provided in the video below!


Steamboat trigonometry example word problem

Mark Twain sat on the deck of a river steamboat. As the paddlewheel turned, a point on the paddle blade moved in such a way that its distance, d, from the water’s surface was a sinusoidal function of time. When his stopwatch read 4 seconds, the point was at its highest, 16 feet above the water’s surface. The wheel’s diameter was 18 feet, and it completed a revolution every 10 seconds.

a. Sketch a graph of the sinusoid

b. Write the equation of the sinusoid

c. How far above the surface was the point when Mark’s stopwatch read:

i. 5 seconds

ii. 17 seconds

d. What is the first positive value of time at which the point was at the water’s surface? At that time, was it going into or coming out of the water? Explain.


Solution to this Trigonometric Function example word problem is provided in the video below!


Temperature trigonometry word problem

The max temperature in Buenos Aires is on January 15 and is 33 degrees Celsius. The minimum temperature is on July 16 (day 197) and is 9 degrees Celsius. (Assume the period is 365 days).

a) Sketch the temperature as a function of time

b) Find the equation for the temperature, T, as a function of time, t.

c) What is the temperature on Mother’s Day, May 10?

d) Give the dates during a one year period when the temperature is below 18 degrees Celsius.


Solution to this Trigonometric Function example word problem is provided in the video below!


Leave a comment

Your email address will not be published. Required fields are marked *

July 2024

MathCabin.com 2019-2024 © All Rights Reserved.